
Generating Top-Down View from 6 Stereo Images

Muhammad Osama Khan 1 Muhammad Muneeb Afzal 1 Divya Juneja 1

Abstract

Team 19 achieved best threat scores of 0.762 and
0.0143 on the validation set on the road segmen-
tation and object detection tasks respectively. Fur-
thermore, we ranked 8th overall on the leader-
board.

1. Introduction and Related Works
Top-down view estimation involves 2 main components –
road segmentation and object detection. Road segmentation
falls under the realm of semantic segmentation. Some note-
worthy works in this domain include SegNet, which stores
the max-pooling indices in the encoder layers to upsample
(max unpool) during the decoding step, thereby eliminating
the need for learning to upsample. Other key works include
(Long et al., 2015) which introduced fully convolutional net-
works using deconvolution (transposed convolution) layers
for semantic segmentation.

In the realm of 2D object detection, YOLO v3 (Redmon &
Farhadi, 2018) and Faster-RCNN (Ren et al., 2015) are
some state-of-the-art works. YOLO v3 divides the im-
age into grids and detects several bounding boxes per grid
whereas Faster-RCNN generates region proposals which are
then used for detection.

Self-supervised learning is used to learn feature representa-
tions from unlabeled data. Particularly, pretext tasks such
as Jigsaw (Noroozi & Favaro, 2016) have proved to work
well for learning feature representations for downstream
vision tasks. In this work, we take inspiration from the
aforementioned semantic segmentation, object detection
and self-supervised methods and introduce novel features
specific to the task at hand.

2. Road Segmentation
We designed our own architecture for road segmentation.
The final architecture that we submitted for the competition
consists of 6 VGG-like encoders with shared weights and
a single decoder (see Figure 1). Our main novelty is in
designing pretext tasks specifically suited to this architecture
(see sections 2.2 and 2.3).

Figure 1. Road Segmentation Architecture

2.1. Architectures

2.1.1. COMBINING 6 INTERMEDIATE FEATURE MAPS

Three strategies were tried for combining the 6 feature
maps produced by the 6 encoders: concatenation, mean
and weighted average. Concatenation produced the best
results (see Table 1).

Table 1. Combining Feature Maps

MEAN WEIGHTED AVERAGE CONCATENATE

0.681 0.685 0.741

2.1.2. DECODER ARCHITECTURES

For designing decoder architectures, we experimented with
2 strategies. Firstly, we used up-sampling and 2D con-
volutions to increase the spatial representations whereas,
secondly, we used transposed convolutions. We observed
that the latter yielded better results as shown in Table 2.

Table 2. Decoder Architectures

UPSAMPLING +
CONVOLUTIONS

TRANSPOSED
CONVOLUTIONS

0.733 0.741

2.2. Using Extra Information (Lane Masks)

Our team leveraged the extra information provided to us in
the form of lane masks in 3 ways. Firstly, we trained the 6
encoder network for lane segmentation and then transferred

https://piazza.com/class/k5spqaanqk51ks?cid=344


Generating Top-Down View from 6 Stereo Images

the weights for road segmentation. This achieved a lower
threat score than no pretrain. Secondly, we designed a 6
encoders, 2 decoders architecture to predict both road and
lane masks simultaneously. This approach achieved slightly
better results than no pretrain. Thirdly, and perhaps most
interestingly, we designed a correspondence pretext task.
Given 2 inputs, road mask and lane mask, the network had
to predict if the two masks correspond. For instance, the
road and lane masks in the left column of Figure 2 corre-
spond since they are taken from the same scene whereas
the ones in the right column do not. This idea was inspired
from (Arandjelovic & Zisserman, 2017), where the task
is to predict if the image and audio correspond. Out of
the 3 approaches we tried, the lane-road correspondence
approach yielded the best results, although we found it re-
quired careful initialization to train effectively (see Table
3).

Table 3. Ablation study of 3 ways of using lane masks

NO
PRETRAIN

TRANSFER
LEARNING

LANE +
ROAD SEG-
MENTATION

LANE –
ROAD COR-

RESPON-
DENCE

0.741 0.736 0.743 0.746

Figure 2. Lane-road correspondence pretext task

2.3. Self-supervised Learning

2.3.1. PRETEXT TASKS

Next, we utilized self-supervised pretext tasks in order to
pretrain the network on the unlabeled dataset. Here, we
used 2 pretext tasks: jigsaw and our own designed pretext
task which we call stereo. Similar to the jigsaw idea, the
task is the following: given a randomly permuted sequence
of images from the 6 cameras, the network has to predict the
permutation. The intuition behind designing this task was
that in order to accurately perform road segmentation for
the entire scene, the network needs to know which camera
represents which part of the scene. However, the stereo
pretrain network could simply cheat by looking at the body
of the ego-car that is visible in each image. Since this

view of the ego-car is fixed across different frames, the
network would not learn anything about the scene itself.
In order to avoid this, we crop each of the 6 images to
the central 150×150 region, thereby removing any view of
the ego-car from the images. In comparison to the jigsaw
pretext task, pretraining with the stereo pretext task yielded
better results when both methods were pretrained for 700
permutations. However, increasing the jigsaw permutations
to 1000 yielded better results (see Table 4).

Note: Stereo has maximum permutations = 6! = 720.

Table 4. Jigsaw and stereo pretext tasks comparison

NO
PRETRAIN

JIGSAW
(700)*

STEREO
(700)*

JIGSAW
(1000)*

0.741 0.750 0.753 0.762

*represents number of permutations

2.3.2. TRANSFER LEARNING

While pretraining with the jigsaw and stereo pretext tasks,
note that only the road segmentation encoder (see Figure
1) was trained. For transfer learning, we experimented with
3 schemes – 1) Training only the decoder and keeping the
encoder weights fixed from the pretrain task, 2) Training
both encoder and decoder with the same learning rate, and
3) Training decoder with a higher learning rate than the
encoder. The third strategy produced the best results (see
Table 5).

Table 5. Transfer Learning

NO
PRETRAIN

DECODER
ONLY

ENCODER +
DECODER

ENCODER +
DECODER

(DIFFERENT
LRS)

0.741 0.737 0.756 0.762

2.4. Visualizations

• Strengths: The network predicts long and wide roads,
especially those located at the center of the scene, very
accurately as can be seen from the top row of Figure 3.

• Weaknesses: The network struggles to predict narrow
roads, especially those located at the boundaries of the
scene, as can be seen from the bottom row of Figure
3. These failures can be attributed to occlusion and the
infrequency of these types of roads in the dataset.

In order to verify our hypothesis that the stereo pretrain
task does indeed help the network learn the different camera
views, we did a T-SNE visualization of the encoded features
from the stereo pretrain network. Figure 4 shows that the
network clusters the feature representations for the 6 camera



Generating Top-Down View from 6 Stereo Images

images in different regions of the latent space, thereby help-
ing the network perform the road segmentation task since
it can distinguish between the different camera views and
match each camera view to a particular region of the scene
road segmentation result.

Figure 3. Positive and negative examples

Figure 4. T-SNE visualization of encoded features from stereo
pretrain network. The axes have been normalized to 0-1. The
legend represents the 6 camera views 0-5.

3. Object Detection
For object detection, we experimented with two types of ar-
chitectures: Modified YOLOv3 (Redmon & Farhadi, 2018)
and Faster R-CNN (Ren et al., 2015).

3.1. Modified YOLOv3

3.1.1. INPUT TYPES

Firstly, we experimented with different types of inputs to
our network and chose the best way to input our data. The
two different types of inputs used are shown in Figure 5.

Firstly, we resized the original images of sizes 256 × 256 ×
3 to 288 × 288 × 3 and then concatenated them to obtain
an input feature map of size 288 × 288 × 18. Secondly, we
tiled the 6 input images into a single image of dimension
512 × 918 × 3 and then resized the image to 800 × 800
× 3. Note that 3 images corresponding to the front view
of the car were tiled in the first row whereas the 3 images

corresponding to the back view of the car were tiled in the
second row as shown in Figure 5.

Figure 5. Input type for our objection detection network

Table 6 shows that we obtained superior results in the case
of tiled images. We hypothesize that the network was able
to learn the top-view from the tiled images since it was
able to reason from 3 images at the front and 3 images at
the back. Hence it was able to reconstruct the top-view
and finally predict the required bounding boxes. However,
for concatenated images, it was very difficult to learn the
spatial relationship between the 6 images and reconstruct
the top-view to be able to predict the bounding boxes.

Table 6. Input Types

CONCATENATED TILED

0.000143 0.000498

3.1.2. DIFFERENT ARCHITECTURES

We experimented with different types of architectures with
different preprocessing of the targets for bounding boxes.

Vanilla YOLOv3 with Single Targets The main difficulty
in using YOLO-like architecture was that it accepts in-
puts in the form: xcentre, ycentre, width, height. How-
ever, in our given task, we are given 4 coordinates of
the bounding boxes (i.e. 8 values). In vanilla architec-
ture, we simply converted the 4 coordinates to the required
xcentre, ycentre, width, height by using the formulae given
below. Note that in this case, we assume that the boxes
are not tilted. Since we did not get as great results as we
expected (See Table 7), we realized that we needed to incor-
porate tilted boxes in our network design. This led to our
proposed Modified YOLOv3: Double Targets architecture.

Given original inputs (xi’s, yi’s), we do the following pre-
processing:

xi = 10xi + 400; yi = 10yi + 400, ∀i = 1, .., 4

xcentre =
(x1 + x4)

2
/800; ycentre =

(y1 + y4)

2
/800

width = |x2 − x3|/800; height = |y2 − y3|/800



Generating Top-Down View from 6 Stereo Images

Table 7. Different Architectures for YOLOv3

VANILLA DOUBLE TARGETS

0.000297 0.000498

Modified YOLOv3:Double Targets If we assume that
the bounding boxes are not tilted, it means we are under-
utilizing our targets and thus losing essential information.
To rectify this problem, we introduced the idea of double
targets, which means that not only did we input the four
values xcentre, ycentre, w, h, but we also input extra targets
(original 8 values) of the target. The pipeline for Double
Targets is shown in Figure 6.

Figure 6. Double Targets architecture - only one head (scale) of
YOLOv3 is shown

In order to incorporate tilted boxes, which means predicting
8 coordinates, we added a few linear layers after the 4 co-
ordinates output produced by YOLO. As shown in Figure
6, we compare Targets A with 4 outputs and Targets B with
output from linear layers, thus giving us Loss A and Loss B.
By using double targets, we improved our performance as
illustrated in Table 7.

3.2. Modified Faster R-CNN

Although we tried various ideas for YOLOv3, we obtained
best results for object detection with modified F-RCNN.

3.2.1. DIFFERENT LOSS FUNCTION

We modified the loss of the original Faster R-CNN by giving
different weights to different parts of the loss function.

Table 8. Loss function weights

COORDINATES
(REGRES-

SION)
OBJECTNESS CLASSIFIER

RPN RE-
GRESSION

SCORE

1.0 1.0 1.0 1.0 0.0096
5.0 1.0 1.0 1.0 0.0143

Note that our task is class agnostic i.e. we do not care which

class the bounding box belongs to. Therefore, in order to
utilize this laxation, we weighted the four parts of the loss
functions in order to obtain an optimized loss function for
our use case. As per Table 8, increasing the weight for
regression loss yields the best result.

Strengths and Weaknesses of YOLOv3 and FRCNN We
note that the performance of modified FRCNN was far su-
perior than the modified YOLOv3 architecture. According
to our hypothesis, this is because YOLOv3, with its mecha-
nism of predicting anchors in each of the grid cells, is too
attuned for accepting single images and predicting bounding
boxes for one image. In other words, YOLOv3, by dividing
the input images into grid cells, tries to find bounding boxes
in each of the grid cells and thus relies on local features
of one image. This means that upon receiving 6 images, it
is not able to reason about bounding boxes across images
properly. However, FRCNN architecture with its region
proposals idea is more robust to these issues than YOLOv3.

4. Conclusion
In summary, we obtained our best road segmentation threat
score of 0.762 when using the 6 encoders siamese archi-
tecture along with the jigsaw and stereo pretext tasks for
pretraining. For object detection, we obtained our best threat
score of 0.0143 when using a modified version of Faster
RCNN. We were placed 8th overall on the leaderboard.

References
Arandjelovic, R. and Zisserman, A. Objects that sound.

CoRR, abs/1712.06651, 2017. URL http://arxiv.
org/abs/1712.06651.

Long, J., Shelhamer, E., and Darrell, T. Fully convolu-
tional networks for semantic segmentation. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3431–3440, 2015.

Noroozi, M. and Favaro, P. Unsupervised learning of vi-
sual representations by solving jigsaw puzzles. CoRR,
abs/1603.09246, 2016. URL http://arxiv.org/
abs/1603.09246.

Redmon, J. and Farhadi, A. Yolov3: An incremental
improvement. CoRR, abs/1804.02767, 2018. URL
http://arxiv.org/abs/1804.02767.

Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn:
Towards real-time object detection with region proposal
networks. In Cortes, C., Lawrence, N. D., Lee, D. D.,
Sugiyama, M., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems 28, pp. 91–99. Curran
Associates, Inc., 2015. URL https://arxiv.org/
pdf/1506.01497.pdf.

https://piazza.com/class/k5spqaanqk51ks?cid=344
http://arxiv.org/abs/1712.06651
http://arxiv.org/abs/1712.06651
http://arxiv.org/abs/1603.09246
http://arxiv.org/abs/1603.09246
http://arxiv.org/abs/1804.02767
https://arxiv.org/pdf/1506.01497.pdf
https://arxiv.org/pdf/1506.01497.pdf

